

FRAUNHOFER-INSTITUT FÜR ANGEWANDTE POLYMERFORSCHUNG IAP

2

Probe	MALLS-GPC		Osmometrie	
	M _w ×10 ⁻³ [g/mol]	M _n ×10 ⁻³ [g/mol]	$M_n \times 10^{-3} [g/mol]$	$A_{2,0} \times 10^{3} [g/mol]$
Poly-DADMAC1	74	55	42	1,11
Poly-DADMAC 2	162	117	101	1,40
Poly-DADMAC 3	245	180	178	1,75
Poly-DADMAC 4	643	367	373	1,61

- 1 Chemische Struktur von Poly-DADMAC.
- **2** GPC-MALLS und Membranosmometrie im Vergleich.

MEMBRANOSMOMETRIE AN REFERENZ-MATERIALIEN AUS POLY-DADMAC

Poly(diallyldimethylammonium-chlorid) (Poly-DADMAC) ist ein kationisches Polymer, das großtechnisch hergestellt wird (Abb. 1). Es findet in vielen Prozessen Anwendung, so z.B. als Flockungshilfsmittel in der Papierindustrie oder der Abwassertechnologie. Eine Reihe von Poly-DADMAC-Proben mit unterschiedlichen Molmassen wurde hergestellt und charakterisiert, um diese als Referenzmaterialien für eine Prozessanalytik einzusetzen. Die molekulare Charakterisierung der Standards erfolgte durch Gelpermeationschromatographie, die mit einer Vielwinkellichtstreuung gekoppelt wurde (GPC-MALLS). Die zahlengemittelten Molmassen M_n wurden nochmals direkt über osmotische Messungen verifiziert (Membranosmometrie).

Aus der GPC-MALLS wurden speziell für Proben, deren Molmassen kleiner als 10⁵ g/mol sind, zu hohe Zahlenmittel M_n erhalten (Abb. 2). Die niedermolekularen Anteile einer Probe sind hier mittels Lichtstreuung zunehmend schlechter zu erfassen; demzufolge werden höhermolekulare Fraktionen zu stark gewichtet.

In der Membranosmometrie läßt sich M_n unmittelbar aus dem Kehrwert des Ordinatenabschnittes einer P_{red} -c-Auftragung entnehmen. Ferner beschreibt der Anstieg einer Messkurve bei c=0 den jeweiligen 2.Virialkoeffizienten $A_{2,0}$ (Abb. 3).

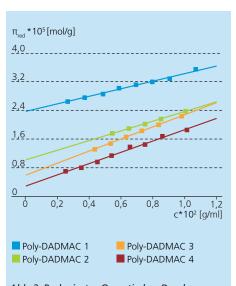


Abb. 3 Reduzierter Osmotischer Druck von P-DADMAC Proben mit unterschiedlichen Molmassen gegen die Polymerkonzentration c aufgetragen.

Fraunhofer-Institut für Angewandte Polymerforschung IAP

Wissenschaftspark Potsdam-Golm Geiselbergstr. 69 14476 Potsdam-Golm

Ansprechpartner

Dr. Erik Wischerhoff

Telefon +49 331 568-1508 erik.wischerhoff@iap.fraunhofer.de

www.iap.fraunhofer.de

pioneers in polymers