© Fraunhofer IAP
© Fraunhofer IAP

Materials for Life Science

Materials for life science

Wwe develop polymer systems for biomedical applications in therapy, diagnosis and prosthetics. In particular, we focus on polymers with tailored property profiles.

Examples of application areas are

  • polymers for biomedical surface modification
  • production of drug delivery systems based on nanocarriers
  • copolymers for non-viral gene delivery
  • functional colloids for magnetic resonance imaging

Our market-oriented activities aim at the transfer of research results to applications in biology, pharmacy and medicine. We work in close cooperation with the industry.

Our services

Tailor-made polymer-based systems

The department Materials for Life Science provides a wide range of services to the partners from life sciences industry. We have suitable methods for the development of custom polymer-based systems that can be transferred to larger scale production. We are specialized in the synthesis and characterization of biocompatible polymers and colloids which may find use in a variety of areas:



development of innovative diagnostic methods, such as

  • new contrast agents for imaging techniques in medicine
  • specific polymers or bioconjugates for use in diagnostic kits or biochips

biofunctional coating of surfaces, such as

  • immobilization of biomolecules to obtain the function
  • suppression nonspecific adsorption


Medical devices

  • synthesis and characterization of defined biocompatible polymers as precursors for artificial skin, catheters, prostheses, or contact lenses


"Intelligent" materials with switchable polymers

  • development of polymers which change properties upon external stimulation, for example by temperature, light, pH or ionic strength
  • polymers for which the presence of certain compounds triggers a switching operation; changing the solvent or wetting behavior causes a change of  molecular structure or state of aggregation

Our research topics

"Intelligent" materials

While the properties of most synthetic materials are persistently specified, many biological systems are able to adapt to changing environmental conditions. In analogy to such behavior, for several years researchers try to develop materials whose properties can be "switched" by external stimuli. They are called "smart" materials. As switches, many physical or chemical stimuli come into consideration, such as light, temperature, pH ot complex chemical reactions. Water-soluble polymers offer unique opportunities in this area, not least because they sometimes behave counter-intuitive. Thus, many uncharged polymers dissolve in water at low temperature but precipitate at increased temperature. Such a miscibility gap can be specifically used for switching: a temperature change of only a few degrees can completely change the property profile of a polymer. We are currently investigating possible applications of such reversibly switchable polymers, for example, in hydrogels on surfaces or emulsifiers.


Well-defined macromolecular structures

Block copolymers consisting of a nonionic block and a cationic block are able to complex the negatively charged backbone of the DNA. We examine whether such complexes can be used as non-viral gene vectors.


Supramolecular self-assembly of macromolecules

We study the self-assembly of amphiphilic block copolymers in aqueous media. These form various morphologies, such as simple micelles, vesicles or multicompartment micelles. Such nanostructures are interesting, for example as vehicles for drug delivery applications.



We develop colloids with tailored properties, such as monodisperse ferrofluids for use in magnetic resonance imaging. These colloids include inorganic particles of magnetite coated with molecular invisibility cloaks (diblocks of synthetic polymers and polypeptides).

Our Equipment

  • modern synthesis laboratories for low-and high-molecular compounds
  • modern methods of molecular analysis of organic substances
  • various methods of molecular weight analytics:
    • size exclusion chromatography (GPC/SEC)
    • cryoscopy
    • osmotic pressure
    • vapor pressure osmometry (VPO)
    • ultracentrifuge
  • polyelectrolyte titration, turbidity photometry
  • UV-vis-NiR and FT-IR spectrometer
  • HPLC high performance liquid chromatography coupled with MS
  • thermogravimetry and differential scanning calorimetry (DSC)
  • microscopes (with polarization, darkfield and phase contrast facility stereo incident light, inverse fluorescence and confocal laser scanning microscope)
  • photomicrograph and digital image analysis
  • dynamic light scattering
  • surface tension (tensiometers, spinning drop)
  • rheometer (rotation, oscillation, interfacial rheology)
  • precision density measurement
  • ellipsometer
  • surface plasmon resonance spectrometer (SPR)
  • spin and dipcoater
  • determination of the minimum film forming temperature (MFT)
  • steam sterilizers, autoclaves


  • S. Bruzzano, G. Deerberg, A. Laschewsky, J. Storsberg, H. Wack, E. Wischerhoff: Energieautarkes Trinkwassergewinnungssystem auf Basis thermisch reversibel schaltbarer Hydrogele, AZ 10 2010 047 788.5 (2011)
  • C. Duschl, A. Lankenau, J.-F. Lutz, A. Laschewsky, E. Wischerhoff, S. Schmidt, T. Hellweg: Thermoreactive substrate with microgels, method for its preparation, and culture method for biological cells, WO 2011116922 A2, DE 102010012252 A1 (2011)
  • C. Duschl, A. Lankenau, J.-F. Lutz, A. Laschewsky, E. Wischerhoff, G. R. Fuhr, F. Bier: Substrate, culture facility and culture method for biological cells, WO 2011116921 A1, DE 102010012254 A1 (2011)
  •  C. Duschl, A. Lankenau, S. Schmidt, T. Hellweg, E. Wischerhoff, A. Laschewsky, J.-F. Lutz: Thermoresponsive microgel substrate for production and cultivation of biological cells, WO 2011116922 A2, DE 102010012252 A1 (2011)
  •  E. Wischerhoff, J.-F. Lutz, A. Laschewsky C. Duschl, A. Lankenau, S. Schmidt, N. Badi: Thermoresponsive multi-layer substrate for biological cells, WO 2011147930A1, EP 2390310A1 (2011)
  •  H. Wack, S. Bruzzano, G. Deerberg, J. Storsberg, A. Laschewsky, E. Wischerhoff: System, Verbund und Verfahren zur Trinkwassergewinnung durch Aufnahme von Luftfeuchtigkeit aus der Umgebung auf Basis thermisch schaltbarer Hydrogele, 10 2010 047 788.5 (2010)
  •  E. Wischerhoff, J.-F. Lutz, A. Laschewsky, C. Duschl (IBMT), A. Lankenau (IBMT), N. Badi, S. Schmidt (MPI-KG): Thermoresponsives Multischichtsubstrat für biologische Zellen AZ: EP 1016 4296.5 (2010)
  •  H. Bäumler, R. Georgieva, D. Wang, M. Chanana, H. Möhwald, J.-F. Lutz: Mikropartikel enthaltend mindestens ein Aggregat aus superparamagnetischen Nanopartikeln, DE102008040042 (2009)


  • A. Fandrich, J. Buller, E. Wischerhoff, A. Laschewsky, F. Lisdat: Electrochemical Detection of the Thermally Induced Phase Transition of a Thin Stimuli-Responsive Polymer Film, ChemPhysChem 13/8, p. 2020–2023 (2012)
  • K. Uhlig, B. Boysen, A. Lankenau, M. Jaeger, E. Wischerhoff, A. Laschewsky, C. Duschl: On the influence of the architecture of poly(ethyleneglycol)-based thermoresponsive polymers on cell adhesion, Biomicrofluidics 6/2, 024129-1–024129-11 (2012)
  • S. Üzgün, G. Nica, C. Pfeifer, M. Bosinco, K. Michaelis, J.-F. Lutz, M. Schneider, J. Rosenecker, C. Rudolph: PEGylation Improves Nanoparticle Formation and Transfection Efficiency of Messenger RNA, Pharmaceutical Research 28/9, p. 2223–2232 (2011)
  • S. Glatzel, A. Laschewsky, J.-F. Lutz: Well-Defined Uncharged Polymers with a Sharp UCST in Water and in Physiological Milieu, Macromolecules 44/2, p. 413–415 (2011)
  • M. K. M. Leung, G. K. Such, A. P. R. Johnston, D. P. Biswas, Z. Zhu, Y. Yan, J.-F. Lutz, F. Caruso: Assembly and Degradation of Low-Fouling Click-Functionalized Poly(ethylene glycol)-Based Multilayer Films and Capsules, Small 7/8, p. 1075–1085 (2011)
  • J.-F. Lutz, B. V. K .J. Schmidt, S. Pfeifer: Tailored Polymer Microstructures Prepared by Atom Transfer Radical Copolymerization of Styrene and N-substituted Maleimides, Macromolecular Rapid Communications 32/2, p. 127–135 (2011)
  • B. V. K. J. Schmidt, N. Fechler, J. Falkenhagen, J.-F. Lutz: Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges, Nature Chemistry 3/3, p. 236–240 (2011)
  • I. Singh, Z. Zarafshani, F. Heaney, J.-F. Lutz: Orthogonal modification of polymer chain-ends via sequential nitrile oxide–alkyne and azide–alkyne Huisgen cycloadditions, Polymer Chemistry 2/2, p. 372–375 (2011)
  • E. Wischerhoff, N. Badi, A. Laschewsky, J.-F. Lutz: Smart Polymer Surfaces: Concepts and Applications in Biosciences, Advances in Polymer Science 240/0, p. 1–33 (2011)
  • J. Buller, A. Laschewsky, J.-F. Lutz, E. Wischerhoff: Tuning the Lower Critical Solution Temperature of Thermoresponsive Polymers by Biospecific Recognition, Polymer Chemistry 2/7, p. 1486–1489 (2011)
  • D. Zehm, A. Laschewsky, P. Heunemann, M. Gradzielski, S. Prévost, H. Liang, J.P. Rabe, J.-F. Lutz: Synthesis and Self-assembly of Amphiphilic Semi-brush and Dual Brush Block Copolymers in Solution and on Surfaces, Polymer Chemistry 2/1, p. 137–147 (2011)
  • S. Schmidt; S. Kessel; E. Wischerhoff; A. Laschewsky; J.-F. Lutz; K. Uhlig; A. Lankenau; C. Duschl; A. Fery: Bioactive Surfaces Based on PEG. An AFM Characterization of Novel Thermo-responsive Surfaces, Imaging & Microscopy 12/1, p. 40–42 (2010)
  • A. Laschewsky, E. Wischerhoff, N. Badi, J.-F. Lutz: Smart bioactive surfaces, Soft Matter 6/4, p. 705–713 (2010)
  • J.-F. Lutz, S. Kessel, S. Schmidt, R. Müller, E. Wischerhoff, A. Laschewsky, K. Uhlig, A. Lankenau, C. Duschl, A. Fery: Thermoresponsive PEG-Based Polymer Layers: Surface Characterization with AFM Force Measurements, Langmuir 26/5, p. 3462–3467.(2010)
  • K. Uhlig, E. Wischerhoff, J.-F. Lutz, A. Laschewsky, M. S. Jaeger, A. Lankenau, C. Duschl: Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy, Soft Matter 6/17, p. 4262–4267 (2010)
  • J.-F. Lutz: Sequence-controlled polymerizations: the next Holy Grail in polymer science?, Polymer Chemistry 1/1, p. 55–62 (2010)
  • J.-F. Lutz: Polymer Chemistry: A Controlled sequence of events, Nature Chemistry 2/2, p. 84–85 (2010)
  • Z. Zarafshani; T. Obata; J.-F. Lutz: Smart PEGylation of Trypsin, Biomacromolecules 11/8, p. 2130–2135 (2010)
  • S. Glatzel, N. Badi, M. Päch, A. Laschewsky, J.-F. Lutz: Well-defined synthetic polymers with a protein-like gelation behavior in water, Chemical Communications 46/25, p. 4517–4519 (2010)
  • S. Üzgün, Ö. Akdemir, C. Maucksch, M. M. Golas, B. Sander, H. Stark, R. Imker, J.-F. Lutz and C. Rudolph: Characterization of tailor-made copolymers of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and N,N-dimethylaminoethyl methacrylate (DMAEMA) as nonviral gene transfer agents – Influence of macromolecular structure on gene vector particle prop, Biomacromolecules 11/1, p. 39–50 (2010)
  • M.-A. Berthet, Z. Zarafshani, S. Pfeifer, J.-F. Lutz: Facile Synthesis of Functional Periodic Copolymers: A Step toward Polymer-Based Molecular Arrays, Macromolecules 43/1, p.44–50 (2010)
  • A. Laschewsky, J. Storsberg, E. Wischerhoff: Tailoring Surfaces by Polymer Grafting on Paper, Cellulose and Related Substrates, chapter 15 in: PTS Symposium Applied Interface Chemistry Targeted use of interface processes for paper and board production München, 9.–10.02.2010, Production and publishing house: Books on Demand GmbH, Norderstedt (2010)
  • J.-F. Lutz, K. Schade, A. Hoth: Design of Oligo(ethylene glycol)-based Thermoresponsive Polymers: an Optimization Study, Designed Monomers and Polymers 12/4, 343–353 (2009)
  • J.-F. Lutz: Vers des dérivés poly(éthylène glycol) intelligents : ou comment transformer un polymère biocompatible en un polymère stimulable, Bulletin du Groupe Français d’études et d’applications des Polymères (GFP) 2009/112, p. 22–24 (2009)
  • S. Pfeifer, Z. Zarafshani, N. Badi, J.-F. Lutz: Liquid-Phase Synthesis of Block Copolymers Containing Sequence-ordered Segments, Journal of the American Chemical Society 131/26, p. 9195–9197 (2009)
  • I. Singh, Z. Zarafshani, J.-F. Lutz, F. Heaney: Metal-Free “Click” Chemistry: Efficient Polymer Modification via 1,3-Dipolar Cycloaddition of Nitrile Oxides and Alkynes, Macromolecules 42/15, p. 5411–5413 (2009)
  • I. Tan, Z. Zarafshani, J.-F. Lutz, M.M. Titirici: PEGylated Chromatography: Efficient Bioseparation on Silica Monoliths Grafted with Smart Biocompatible Polymers, ACS Applied Materials and Interfaces 1/9, p. 1869–1872 (2009)
  • N. Badi, J.-F. Lutz: Sequence Control in Polymer Synthesis, Chemical Society Reviews 38/12, p. 3383–3390 (2009)
  • N. Badi, J.-F. Lutz: PEG-based thermogels: Applicability in Physiological Media, Journal of Controlled Release 140/3, p. 224–229 (2009)
  • M. Chanana, S. Jahn, R. Georgieva, J.-F. Lutz, H. Bäumler, D. Wang: Fabrication of Colloidal Stable, Thermosensitive, and Biocompatible Magnetite Nanoparticles and Study of Their Reversible Agglomeration in Aqueous Milieu, Chemistry of Materials 21/9, p. 1906–1914 (2009)
  • N. Fechler, N. Badi, K. Schade, S. Pfeifer, J.-F. Lutz: Thermogelation of PEG-based Macromolecules of Controlled Architecture, Macromolecules 42/1, p. 33–36 (2009)
  • E. Wischerhoff; S. Glatzel; K. Uhlig; A. Lankenau; J.-F. Lutz; A. Laschewsky: Tuning the Thickness of Polymer Brushes Grafted from Nonlinearly Growing Multilayer Assemblies, Langmuir 25/10, p. 5949–5956 (2009)
  • J.-F. Lutz: Synthesis of Smart Materials by Atom Transfer Radical Polymerization of Oligo(ethylene glygol) Methacrylates, New Smart Materials via Metal Mediated Macromolecular Engineering, NATO Science for Peace and Security Series A: Chemistry and Biology, Springer (2009)
  • J.-F. Lutz, B.S. Sumerlin: The Role of Click Chemistry in Polymer Synthesis Click Chemistry for Biotechnology and Materials Science, Chichester John Wiley & Sons (2009)
  • Z. Zarafshani, J.-F. Lutz: Polymer- and Colloid-Functionalization using a Combination of ATRP and Click Chemistry, New Smart Materials via Metal Mediated Macromolecular Engineering, NATO Science for Peace and Security Series A: Chemistry and Biology, Springer (2009)
  • J.-F. Lutz: Development of Versatile Chemical Platforms to Access New Generations of “Smart” Polymer Materials, Universität Potsdam, Potsdam (2009)
  • Ö. Akdemir; N. Badi; S. Pfeifer; Z. Zarafshani; A. Laschewsky; E. Wischerhoff; J.-F. Lutz: Design of Thermoresponsive Materials by ATRP of Oligo(ethylene glycol)-based (Macro)monomers, Controlled/Living Radical Polymerization: Progress in ATRP, Washington DC, American Chemical Society (2009)