We celebrate 30 years Fraunhofer IAP!
The Fraunhofer IAP has developed rapidly in 30 years. Here we tell you where we come from and where we are going.
The Fraunhofer IAP has developed rapidly in 30 years. Here we tell you where we come from and where we are going.
The Fraunhofer IAP turns THIRTY. What will the next 30 years bring?
Lightweight design systems will benefit decisively from the increasing use of composites in the future and thus make an important contribution to completing the energy and mobility turnaround. Due to their low mass, combined with their high strength and stiffness properties and enormous design freedom, they are ideally suited to the production of particularly energy efficient structures with a high functional density. For example, it is comparatively easy to integrate additional optical and electronic functions in the components and thus implement systemic concepts. Holistic developments, which must above all include recovery and recycling strategies for end-of-life scenarios, will enable more sustainable products in the fields of energy technology, mobility and mechanical engineering. The global megatrends of digitalization and artificial intelligence, decarbonization and biologization of technology will further drive these developments and spur the establishment of a stringent sustainable circular economy.
Life without plastics is hardly conceivable today. They make our lives more comfortable and safer. But large quantities end up in the trash or are incinerated. Only a small proportion is reused as recyclate in the production of new plastic products.
In the future, plastics will be obtained from non-fossil sources such as biomass or CO₂ in a sustainable circular economy. They will be perceived and treated as valuable by consumers and industry. When they have fulfilled their purpose in a “life“, they will be collected by type in digitized deposit and sorting systems. From this “waste“, next-generation processing plants will extract raw materials that are used to produce new plastic products The circle is closed.
At first glance, there is plenty of water in Germany. In the course of climate change, however, there have been long periods of drought in recent years. Soils have dried out, forests have been stressed by the dryness, and trees have died. Therefore, we need to adapt the future use and purification of water. Conventional optimization strategies that are mainly focused on the reduction of the cost of water purification will not be sufficient. The resource water must be thought of as a whole. For example, limits for water pollution must be tightened and wastewater must be understood in the future as a source for the recovery of valuable substances and energy. At Fraunhofer IAP, we are actively contributing to the transformation of water purification: We develop new membranes for sustainable and targeted recovery of water and valuable substances such as nitrates and phosphates for reuse in agriculture.
Sustainability in the textile industry is becoming increasingly important and is demanded by the market. Cellulosic man-made fibers such as viscose or lyocell fulfill precisely these requirements and can thus hold their own against other synthetic man-made fibers. Currently, various alternative processes for the production of cellulosic fibers are on a pilot scale, in which the Fraunhofer IAP is involved as a development partner. I am convinced that in 30 years a European cellulosic staple fiber will be established on the market, in the development of which the Fraunhofer IAP was significantly involved.
Hydrogen will be a central component of the energy transition and decisively drive the decarbonization of society and industry. The production of hydrogen by electrolysis on a large scale, and also its use as a raw material in chemical processes or for electricity generation in fuel cells, requires more efficient catalysts with smaller amounts of rare and therefore expensive precious metals such as platinum or iridium compared to today.
At Fraunhofer IAP, we are developing and testing more robust, long-lasting catalysts with the smallest possible amounts of precious metals, which are already comparable in performance to common commercial materials. So that we will still be able to see the light in thirty years' time.
In the European "Green Deal", the reduction of CO2 emissions is a central goal. To achieve this, energy generation should be as resource-efficient as possible, using sun and wind. However, the production of already established silicon-based solar cells requires a high energy input and the use of critical raw materials. The Fraunhofer IAP is working on an alternative with partners from industry and research in Europe. They are producing printed solar cells based on organic and inorganic-organic raw materials. Such polymer and hybrid materials allow the application of efficient printing technologies that can produce solar cells with a significantly lower carbon footprint. The challenge here is to accomplish a lifetime and performance comparable to conventional systems. Successes have already been achieved on a laboratory scale. Scaling up to processes suitable for industrial use is the task we will be tackling at Fraunhofer IAP in the coming years.