2022 | We celebrate 30 years Fraunhofer IAP!

The Fraunhofer IAP has developed rapidly in 30 years. Here we tell you where we come from and where we are going.

In 1992, we started with 106 employees and 4 research units in Teltow. Today, approx. 250 employees work in 7 research divisions at 7 locations.

The Fraunhofer IAP emerged in 1992 from the Institute for Polymer Chemistry of the Academy of Sciences of the GDR in Teltow-Seehof. Applied polymer research was continued in the initially temporary Fraunhofer Research Institution led by Professor Heinz Zimmermann.

After two years as a temporary Fraunhofer Research Institution, Fraunhofer IAP becomes an independent institute in 1994. The Fraunhofer-Gesellschaft and the universtity of Potsdam agree on a contract for joint cooperation. Potsdam-Golm will become the future headquarters of the Institute.

1997 – Professor Ulrich Buller becomes director of the institute. A fortunate move for the institute, which was able to develop successfully under his leadership. The founding of the now so successful Pilot Plant Center PAZ is one of the archivements of the new director.

2000 – We are moving to Potsdam. The new building with 5000 square meters of floor space near the University of Potsdam's Golm campus allows new cooperation opportunities and firmly establishes Fraunhofer in the Brandenburg research landscape.

2005 – Opening of the Fraunhofer Pilot Plant Center PAZ in Schkopau.  At that time, institute director Prof. Buller and division director Dr. Hahn were key figures in the realization of this project, which has been very successful for the Fraunhofer IAP to this day.

In 2006, Prof. Dr. Fink takes the helm as head of the institute. From car doors to sausage casings – industrial applications based on renewable materials such as cellulose are his focus. Today, bioeconomy and sustainability are still central topics at the Fraunhofer IAP.

In 2012, the Fraunhofer IAP celebrates its 20th anniversary and grows: The "Application Center for Innovative Polymer Technologies" opens with 2800 square meters of office and laboratory space. Here we develop printed OLED and solarcells or polymers for biomedicine.

2013 – With the opening of the "Processing Pilot Plant for Biopolymers Schwarzheide" we expand our expertise in Bioplastics processing. From injection molding and extrusion to films and 3D-printing filaments - until today we offer applied Biopolymer know-how.

2015 – Prof. Böker, an internationally recognized polymer expert, takes over as head of the institute. Building on the institute's broad expertise, he sets a new goal for the future: sustainable innovations at the interface between biology and polymer science.

2016 – The research division "Polymeric Materials and Composites PYCO" becomes part of Fraunhofer IAP and expands the expertise of the institute: fibercomposites for sustainable lightweight construction, printed electronics and large-scale 3D printing. We offer research diversity!

2016 – Inauguration of the Fraunhofer- Conference Center: 275 square meters offer space for 150 people. For conferences, workshops and network meetings. A forum for dialog between science, politics, business and public.

2017 – Start of Fraunhofer High-Performance Center Integration of Biological and Physico-Chemical Material Functions by Fraunhofer IAP and Fraunhofer IZI-BB. Functional materials as key technology for sustainability, energytransition, mobility and health.

2018 – Center for Applied Nanotechnology CAN GmbH is integrated into Fraunhofer IAP. Led by Professor Weller, the production of high-quality nanoparticles opens up new perspectives for displays, LEDs, fuelcells, medicine, diagnostics and cosmetics.

2021 – Move into the new building in Wildau! Our research division PYCO now combines all lightweight expertise under one roof – from monomers to components! 2700 square meters of modern laboratory and office areas provide space for sustainability and energy transition.

2022 – 30 years of Fraunhofer IAP – A reason to celebrate! With pleasure, we look back on the celebratory colloquium of our anniversary. An occasion to review the last years together and to look forward to the next 30 years: We make materials fit for the future!


The Fraunhofer IAP turns THIRTY. What will the next 30 years bring?

Prof. Holger Seidlitz is a lightweight construction expert and heads the research division Polymer Materials and Composites PYCO at Fraunhofer IAP.

What contribution do composites make to the energy turnaround?

Lightweight design systems will benefit decisively from the increasing use of composites in the future and thus make an important contribution to completing the energy and mobility turnaround. Due to their low mass, combined with their high strength and stiffness properties and enormous design freedom, they are ideally suited to the production of particularly energy efficient structures with a high functional density. For example, it is comparatively easy to integrate additional optical and electronic functions in the components and thus implement systemic concepts. Holistic developments, which must above all include recovery and recycling strategies for end-of-life scenarios, will enable more sustainable products in the fields of energy technology, mobility and mechanical engineering. The global megatrends of digitalization and artificial intelligence, decarbonization and biologization of technology will further drive these developments and spur the establishment of a stringent sustainable circular economy.

to the research division "PYCO"

Dr. Antje Lieske heads the department Polymer Synthesis at Fraunhofer IAP.

What role do plastics play in a sustainable circular economy?

Life without plastics is hardly conceivable today. They make our lives more comfortable and safer. But large quantities end up in the trash or are incinerated. Only a small proportion is reused as recyclate in the production of new plastic products.
In the future, plastics will be obtained from non-fossil sources such as biomass or CO₂ in a sustainable circular economy. They will be perceived and treated as valuable by consumers and industry. When they have fulfilled their purpose in a “life“, they will be collected by type in digitized deposit and sorting systems. From this “waste“, next-generation processing plants will extract raw materials that are used to produce new plastic products The circle is closed.

to the department "Polymer Synthesis"

Dr.-Ing. Murat Tutuş heads the department Membranes and Functional Films at Fraunhofer IAP.

How do we manage water as a resource sustainably?

At first glance, there is plenty of water in Germany. In the course of climate change, however, there have been long periods of drought in recent years. Soils have dried out, forests have been stressed by the dryness, and trees have died. Therefore, we need to adapt the future use and purification of water. Conventional optimization strategies that are mainly focused on the reduction of the cost of water purification will not be sufficient. The resource water must be thought of as a whole. For example, limits for water pollution must be tightened and wastewater must be understood in the future as a source for the recovery of valuable substances and energy. At Fraunhofer IAP, we are actively contributing to the transformation of water purification: We develop new membranes for sustainable and targeted recovery of water and valuable substances such as nitrates and phosphates for reuse in agriculture.

to the department "Membranes and Functional Films"

Dr. André Lehmann heads the department Fiber Technology at Fraunhofer IAP.

How do textiles become more sustainable?

Sustainability in the textile industry is becoming increasingly important and is demanded by the market. Cellulosic man-made fibers such as viscose or lyocell fulfill precisely these requirements and can thus hold their own against other synthetic man-made fibers. Currently, various alternative processes for the production of cellulosic fibers are on a pilot scale, in which the Fraunhofer IAP is involved as a development partner. I am convinced that in 30 years a European cellulosic staple fiber will be established on the market, in the development of which the Fraunhofer IAP was significantly involved.

to the department "Fiber Technology"

Dr. Christoph Gimmler heads the department Nanoscale Energy and Structure Materials at Fraunhofer IAP.

How do we replace fossil fuels with hydrogen?

Hydrogen will be a central component of the energy transition and decisively drive the decarbonization of society and industry. The production of hydrogen by electrolysis on a large scale, and also its use as a raw material in chemical processes or for electricity generation in fuel cells, requires more efficient catalysts with smaller amounts of rare and therefore expensive precious metals such as platinum or iridium compared to today.
At Fraunhofer IAP, we are developing and testing more robust, long-lasting catalysts with the smallest possible amounts of precious metals, which are already comparable in performance to common commercial materials. So that we will still be able to see the light in thirty years' time.

to the department "Nanoscale Energy and Structure Materials"

Dr. Christine Boeffel is an expert in printed photovoltaics and a scientist in the Functional Materials and Devices department at Fraunhofer IAP.

How can we make solar energy more sustainable?

In the European "Green Deal", the reduction of CO2 emissions is a central goal. To achieve this, energy generation should be as resource-efficient as possible, using sun and wind. However, the production of already established silicon-based solar cells requires a high energy input and the use of critical raw materials. The Fraunhofer IAP is working on an alternative with partners from industry and research in Europe. They are producing printed solar cells based on organic and inorganic-organic raw materials. Such polymer and hybrid materials allow the application of efficient printing technologies that can produce solar cells with a significantly lower carbon footprint. The challenge here is to accomplish a lifetime and performance comparable to conventional systems. Successes have already been achieved on a laboratory scale. Scaling up to processes suitable for industrial use is the task we will be tackling at Fraunhofer IAP in the coming years.

to the department "Functional Materials and Devices"

Dr. Marlen Malke is an expert in the synthesis of polymers at Fraunhofer Pilot Plant Center PAZ.

Inspired by nature – does the car tire of tomorrow look like this?

Natural rubber from rubber trees, with its excellent abrasion properties, is very well suited for the extremely durable treads of truck tires. But the use of the natural raw material brings problems with it: fungal infestations of rubber trees endanger their existence, and its cultivation areas are severely limited by the climatic conditions required. Both of these factors limit the security of supply. Synthetically produced rubber has so far failed to match its natural counterpart in terms of abrasion behavior. We therefore set ourselves the challenge of understanding the fundamentals of the unique mechanical properties of natural rubber and transferring them to a synthetic product. The result is Biomimetic Synthetic Rubber "BISYKA", which even surpasses the properties of natural rubber. Tires based on "BISYKA" show 30 % less abrasion as well as better rolling resistance than conventional products. The use of Big Data technologies, artificial intelligence as well as energy-efficient synthesis processes will advance the optimization and further development of "BISYKA" rubber in the future. Our goal at the Fraunhofer IAP: to get a car tire rolling with less abrasion and thus reduce the distribution of microplastics into the environment.

to the research division "PAZ"

Dr. Taybet Bilkay-Troni heads the department Polymers and Electronics at Fraunhofer IAP.

How can functional polymers contribute to prevent climate change?

To achieve climate targets, an energy transition is essential. "Green hydrogen", produced by the electrolysis of water and using renewable energy sources, plays a crucial role as a sustainable energy carrier. However, this requires optimization of previously used systems for the production and use of hydrogen. New tailor-made membranes, which are an important component of electrolysis and fuel cells, show great potential in terms of performance, cost-effectiveness and sustainability. In the field of proton-conductive membranes, we have already developed a polymer that exhibits conductivity comparable to commercial products (e.g. Nafion 212 ®), while being more environmentally friendly and cost-effective. With the development of new functional polymers, we are making a significant contribution to the technologies of the energy transition and thus to achieving the climate targets. Today and in 30 years.

to the department "Polymers and Electronics"

Dr. Hadi Bakhshi is an expert in 3D printing technologies for medical applications at Fraunhofer IAP.

How can 3D printing help patients through personalized medicine?

Personalized medicine has the potential to revolutionize the healthcare sector. Therapies will no longer follow uniform designs, but will be individually tailored for patients. Modern 3D printing technologies are part of this paradigm shift. They enable the production of for example heart valves, cardiac assist devices, artificial bones, tissue scaffolds, eyeglasses and even drugs that vary in shape, size, mechanical strength, biodegradability and drug release profile to meet the specific needs of patients. Here, the materials used for 3D printing play a key role. However, their performance is often still inadequate, necessitating further material developments. With novel polymers for artificial pericardial tissues, for example, we print precisely fitting implants that meet the mechanical requirements of a pericardium. We are convinced: New printable materials will help patients in the future through personalized medicine.

to the department "Biofunctionalized materials and (glyco) biotechnology"

Dr. Juta Rottke is an expert in microencapsulation at Fraunhofer IAP.

What can microcapsules contribute to the energy transition and circular economy?

It's the inner values that count, but they have to be well packaged. What sounds like an empty phrase describes the technology of microencapsulation very well. Here, active ingredients are packaged in a protective shell, which enables a wide range of applications. Whether as a lubricant, biocide, adhesive, food additive, fragrance or latent heat storage, the range of applications for encapsulated materials covers almost all areas of life.
Microcapsules are used as additives to give a material new functions. For example, microcapsules filled with liquid lubricant can be incorporated into plastic-based components directly during production. This results in an extension of service life through wear protection as well as a reduction in energy consumption when using such components. Biologically active microcapsules containing microorganisms and other biological materials while retaining their properties are also being developed. A future application for this could be the recovery of raw materials from wastewater by encapsulated biomineralizing bacteria to enable sustainable recycle streams.  And to reduce the input of microplastics into the environment, the microcapsules will be biodegradable after they have fulfilled their function.

to the department "Microencapsulation and polysaccharide chemistry" 

Dr. Anne Krüger Genge is an expert in in-vitro analyses at Fraunhofer IAP.

Will in-vitro tests optimize the development of new substances and biomaterials in the future?

How active substances work and whether biomaterials are safe for humans can be tested in different ways. One approach are novel in-vitro tests – analyzes that take place in a test tube. For this purpose, we use human cells obtained from tissue and investigate their interaction with substances under artificial conditions. At the Fraunhofer IAP, we thus collect comprehensive information on efficacy, toxicity and deeper mechanisms, such as the effect on the immune system, the release of active substances or the appearance of inflammatory foci. In-vitro testing thus ensures a comprehensive and realistic analysis of the biocompatibility of polymers and drugs and active substances.

The close cooperation between chemistry, biology, veterinary medicine and the clinic also promotes the development and evaluation of new products. And, results from the laboratory are transferred to the clinic faster, more cost-effectively and with great patient safety. As a further prospect, the development of new in-vitro models will significantly reduce the number of necessary animal experiments in the coming years.

to the department "Healthcare, Biomaterials und Cosmeceuticals"

M.Sc. Dilip Chalissery is an expert for 4D printing technologies at Fraunhofer IAP.

Will 4D printing bring products "to life" in the future?

4D printing technologies have the potential to change our daily lives. In addition to the shape, 4D printing builds additional physical or chemical functionalities into the 3D structure - bringing objects "to life". 4D objects are produced in a similar way as any other 3D-printed shape. The material makes all the difference. Shape memory polymers, for example, change their shape or function in a predefined way due to the influence of heat, light or other environmental factors. There are many possible applications. Imagine clothing that becomes breathable or insulating due to the outside temperature and physical exertion. Components that repair fractures and cracks by themselves. Or buildings that adapt their insulating properties to the outside temperatures and thus save a lot of energy in the future. The application of bio-based polymers in 4D printing also enables full recyclability and reuse of the products.

to the department "Shape memory polymers"

Dr. Ruben R. Rosencrantz is an expert in glycobiotechnology and heads the research division Life Science and Bioprocesses at Fraunhofer IAP.

Is the future of biomedicine… sweet?

Sugar is sweet. Everyone knows that. But "sugars" are also a variety of molecules that play an important role in organisms. From energy supply to cellular interactions and much more. Sugars are essential for life and also play a major role in diseases. For example, sugar molecules on the cell surface are involved in metastasis as well as in the invasion of cells by pathogens.

However, the chemical and biological diversity of sugars makes it possible to influence and control biological processes in a targeted manner through suitable modifications. Of course, medicine and health are the main focus here - for example, we are developing alternatives to conventional antibiotics or new biocompatible coatings for implants based on sugars in the form of so-called glycopolymers. Sugars are also very suitable for formulating active ingredients, which improves their bioavailability. One example is a project on the formulation and protection of RNA therapeutics with glycopolymers. A requirement for this are efficient manufacturing processes of our sugar-based polymers and the modification of sugars by enzymes. Glycobiotechnology will make far-reaching contributions to biomedicine in the future. The future is... sweet!

to the research division "Life Science and Bioprocesses"

Dr. Evgueni Tarkhanov is a scientist at Fraunhofer IAP and an expert on PLA fibers for the production of chemically homogeneous fiber composites.

How can the recycling of fiber composites be improved?

Fiber composites are used industrially on an annual scale of several million tons to make parts and components lighter and stronger. We encounter them every day in numerous lightweight applications that conserve resources and save CO2 (e.g. through increased energy efficiency) and tap renewable energy sources (e.g. wind power). With regard to the recycling process, however, fiber composites present us with major challenges, as the matrix and fibers usually consist of two different materials that are difficult to separate. In view of this, ongoing research activities at Fraunhofer IAP are concerned with the development of composites whose matrix and fibers are chemically identical. This will significantly simplify the recycling process. Based on the biopolyester polylactic acid (PLA) as matrix and special, newly developed PLA fibers with improved thermomechanical properties, we produce fiber-reinforced monocomponent materials for thermoforming as well as injection molding processes. Our goal is to develop recyclable fiber composites made from 100 percent bio-based PLA with advantageous mechanical properties to further advance the transition to a sustainable circular economy.

to the department "Fiber Technology"